По-другому, обучение должно обладать привлекательностью для учащихся. Привлекательность процесса учения во многом зависит от успешности достижений учащихся, которые должны испытывать чувство удовлетворения по изучении того или иного фрагмента предмета. Для этого у учащихся должны быть понятные цели как результаты их учебной деятельности, и это достигается ориентацией процесса учения от зоны актуального до зоны ближайшего развития.
Что касается объективных предпосылок развития мотивации, то можно выделить две: историчность и прикладная направленность учебного повествования. Первая реализуется посредством введения на уроках культурно-исторического дискурса.
Под ним будем понимать практику постоянного и систематического вовлечения в процесс изучения собственно математики сведений культурно-исторического ряда (А.Н. Земляков ):
- привлечение конкретно-исторического материала, связанного с возникновением тех или иных конкретных математических содержаний (задач, понятий и определений, моделей, конструкций, подходов и идей);
- использование относящихся к математическому содержанию сведений, касающихся конкретно-исторических общеобразовательных, культурных обстоятельств, оказавших прямое или опосредованное влияние на развитие математики;
- привлечение материалов историографического и биографического характера, показывающего роль личностных факторов и межличностных отношений.
Раскрывая вторую объективную предпосылку формирования мотивации, обратимся к словам того же Я.И. Перельмана: «…Когда учащиеся почти на каждом шагу убеждаются, что знание свойств геометрических фигур с успехом применимо к разрешению многочисленных и разнообразных задач, возникающих в действительной жизни – в обиходе, в технике, в естествознании…, тогда и только тогда изучение геометрии с первых же уроков приобретает живой интерес для учеников. …И ещё желательно, чтобы преподавание геометрии не было в глазах учащихся бесцельным занятием. …Необходимо поставить обучение так, чтобы ученик приучался широко и уверенно распоряжаться приобретаемыми геометрическими знаниями для решения разнообразных реальных задач» .
Особую значимость эти слова приобретают в связи с тем, что в 5-6-х классах происходит переход от наглядно-образного, конкретного, индуктивного характера изложения предмета геометрии к дедуктивному изложению на абстрактном формализованном уровне, что создаёт известные трудности у учащихся в усвоении геометрии как одного из самых абстрактных разделов математики.
Поэтому наш второй тезис заключается в следующем: необходимо поставить обучение элементам геометрии в 5-6-х классах так, чтобы заинтересовать учащихся, создать объективные предпосылки для формирования внутренней мотивации к изучению предмета.
Анализ современных подходов к определению целей обучения геометрии (А.Н. Земляков, В.А. Гусев, В.А. Крутецкий, И.Ф. Шарыгин, Н.Г. Подаева и др.) позволяет выделить два основных аспекта: адекватная мотивация к обучению и ориентация на развитие способностей, в том числе на психическое развитие таких качеств личности, как поисковая активность, креативность, теоретическое мышление и др. Первый компонент был раскрыт нами выше. Обратимся ко второму.
Ф. Клейн в начале XX в. писал, что ученика “нужно не только услаждать и поучать, но что в нём надо будить силы, которые вели бы его дальше, побуждать его к самостоятельной деятельности”. По существу здесь содержится призыв к усилению внимания к поисковой активности, которая понимается так: эта активность есть активность субъекта, направленная на изменение ситуации, расцениваемой как неприемлемая, при отсутствии определённого прогноза результатов своей активности, но при постоянном учёте этих результатов (Аршавский, Ротенберг).
Идеальная ситуация, в которой нужна поисковая активность, – решение любой новой (для субъекта – обучаемого) задачи.
Идея поисковой активности, важности поискового поведения восходит к Выготскому, который утверждал, что жизнь в педагогике будущего «раскрывается как система творчества, постоянного напряжения и преодоления, постоянного комбинирования и создания новых форм поведения. Таким образом, каждая наша мысль, каждое наше движение и переживание является стремлением к созданию новой действительности, прорывом вперёд к чему-то новому».
Через посредство геометрии проявляется уникальная возможность развивать поисковую активность на идеальных, абстрактных моделях. Поисковая активность способствует процессу усвоения теоретических, но применяемых на практике знаний. Поисковая, творческая, исследовательская активность, мышление предполагают многозначность, образность, целостность восприятия проблемной ситуации.
История использования текстовых задач в России
В традиционном школьном обучении математике текстовые задачи всегда занимали особое место. С одной стороны, практика применения текстовых задач в процессе обучения во всех цивилизованных государствах идет от глиняных табличек Древнего Вавилона и других древних письменных источников, то есть имеет ...
Подготовка и проведение занятия
занятие экологический дошкольный ознакомительный
Конспект занятия по экологическому воспитанию в старшей группе на тему:
«Удивительные свойства воды»
Задачи:
Образовательные:
1. Познакомить детей со свойствами воды: без цвета, прозрачная, без запаха, без вкуса.
2. Совершенствовать знания дет ...
Психолого-педагогические занятия по воспитанию здорового образа жизни
дошкольников 4-6 лет
Методические приемы: беседа, игровой момент, вопросы к детям, использование наглядного материала, оздоровительная минутка
Материал: Картинки с изображением 2 гномов или куклы: один гном веселый, здоровый, второй гном грустный, с перевязанной рукой, неаккуратный; на каждого ребенка альбомный лист ...