Комментарии к уроку
Тип данного урока - введение нового материала. Его основная цель – сформулировать и доказать теорему о сумме углов треугольника. При изучении данной темы используется проблемная ситуация, используя которую можно легко привести учащихся к трем различным способам доказательства теоремы о сумме углов треугольника, что придаст уроку и знаниям учащихся существенно новое качество.
Оборудование: чертеж.
Изложение нового материала – 13 мин.
Учитель ставит перед учащимися следующие проблемы:
Проблема 1. «Как найти сумму углов треугольника?»
Естественное побуждение учеников – измерить углы и сложить их градусные меры.
Проблема 2. «Как, не измеряя градусную меру углов, доказать, что их сумма равна 180º?».
|
|
На доске изображен данный чертёж
Отложим углы А и В от сторон угла С «по разные стороны от него». Получим угол MCN. Нужно доказать, что он равен 180º, т.е. является развернутым.
Из равенства внутренних накрест лежащих углов CBA и NCB, углов САВ и МСА следует параллельность прямых СМ и АВ; CN и АВ, ссылаясь на аксиому параллельных приходим к выводу, что прямые СМ и CN совпадают. Следовательно, угол МСN равен 180º.
|
III. Наконец, угол NCB можно даже на рассматривать. Отложив угол А и доказав, что СМ | | АВ, замечаем, что
А + В + С = МСВ + В = 180º, как сумма внутренних односторонних углов для параллельных прямых СМ и АВ и секущей СВ.
Решив данную проблему, учащиеся приходят к самостоятельному доказательству теоремы.
Указанные способы доказательства имеют и другие методические преимущества. Так I доказательство выявляет ведущую роль аксиомы параллельных в доказательстве теоремы о сумме углов треугольника.
В доказательстве II, используя признак параллельных прямых и свойство параллельных прямых, мы приучаем учащихся различать прямую и обратную теоремы.
Конструирование по модели
Конструирование по модели, разработанное А.Н. Миреновой и использованное в исследовании А.Р. Лурии, заключается в следующем. Детям в качестве образца предъявляют модель, в которой очертание отдельных составляющих ее элементов скрыто от ребенка (в качестве модели может выступать конструкция, обклее ...
Проекты по реорганизации народного образования, созданные во время буржуазной французской революции
В 70—80-х годах XVIII века во Франции создалась революционная ситуация.
В недрах феодального общества выросли и созрели формы нового, капиталистического уклада. Однако феодально-абсолютистский режим задерживал развитие капитализма, сельского хозяйства, промышленности и торговли. Французская буржу ...
История подготовки педагогов – дефектологов
Дефектолог (в широком смысле трактовки этого термина) — специалист в области изучения, обучения, воспитания и социализации детей с отклонениями в развитии.
Если говорить непосредственно о нашей стране, то долгое время, единственным научно-исследовательским центром в области дефектологии был Экспе ...