Фрагмент урока для 11-го класса по теме «Иррациональные уравнения»

Страница 2

Мы рассмотрели один из способов решения иррациональных уравнений. Это возведение обеих частей уравнения в квадрат. А если переменная находится под знаком корня 3-ей, 4-ой и т.д. степени. Тогда как быть?

(Предполагаемый ответ: возвести обе части уравнения в 3-ю, 4-ю и т.д. степень).

Учитель: Кто попытается сформулировать общий способ решения иррациональных уравнений?

Выслушать все высказывания и в завершении подвести итог.

Учитель: «Значит одним из способов решения иррациональных уравнений является возведение обеих частей уравнения в степень, равную показателю степени корня. И не забыть, при этом сделать проверку, отсеяв, возможные посторонние корни».

Закрепление изученного материала – 10 мин.

Учитель: Итак, существует несколько способов решения иррациональных уравнений. Мы сегодня рассмотрели только некоторые из них. Давайте, перечислим, какие это способы?

(Предполагаемый ответ: возведение обеих частей уравнения в степень, равную показателю степени корня, графический способ, способ замены переменной).

Учитель: Расскажите алгоритм решения уравнений каждого из способов.

Учащиеся очень быстро проговаривают три алгоритма.

Учитель: Молодцы! А теперь прошу внимание на плакат

Плакат с уравнениями:

Рис. 9

Учитель: Как решить первое уравнение?

Выслушивает все варианты ответов. Если будут затруднения, вспоминает еще раз с учащимися определение арифметического квадратного корня и обратить внимание на доску с карточками, , где записаны условия выполнения равенства

(Ответ: уравнение не имеет решения).

Второе уравнение. Учащиеся дают свои варианты решения. Учитель их внимательно выслушивает, корректирует, задает наводящие вопросы, если это необходимо. И все вместе делают вывод, что уравнение не имеет корней.

Третье уравнение. Все необходимые рассуждения высвечиваются на экран. Решаем это уравнение с помощью области определения уравнения. В итоге получаем систему:

которая не имеет решений. Следовательно, и уравнение не имеет решений.

Плакат с решением уравнений:

Решение уравнений:

10

1

x

Рис. 10

Страницы: 1 2 


Другие статьи:

Восприятие художественной литературы дошкольниками
Литературные произведения, созданные специально для юных читателей, а также прочно вошедшие в круг их чтения из устно-поэтического народного творчества и из литературы для взрослых, составляют в совокупности детскую литературу. Детская литература как часть общей литературы является искусством слов ...

Проблема социально-психологического обеспечения в педагогическом аспекте
Фундамент высокого уровня культуры, образования, общественной сознательности, внутренней зрелости людей закладывается нашей школой. Все мы сегодня понимаем, что недостаточно научить человека грамоте, основам наук. Воспитать человека – задача куда сложнее. Необходимость изучения проблемы социально ...

Методическая аутентичность учебного текста
Итак, в работах зарубежных исследователей описываются различные аспекты аутентичности в приложении к учебному процессу. При всем многообразии подходов по прежнему остается открытым вопрос о достижении определенного равновесия между требованиями лингвистики и социолингвистики, с одной стороны, и ме ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru