Элементарные геометрические преобразования играют ведущую роль в обучении решению задач на построение. Трудно переоценить роль задач на построение в формировании математического мышления школьников.
С древних времен геометрические построения способствовали развитию не только самой геометрии, но и других разделов математики. Задачи на построение циркулем и линейкой и сегодня считаются математически весьма интересными, и вот уже более 100 лет это традиционный материал школьного курса геометрии.
Они по своей постановке и методам решения объективно призваны развивать способность отчетливо представлять себе ту или иную геометрическую фигуру и, более того, уметь мысленно оперировать элементами этой фигуры. Задачи на построение могут способствовать пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования с помощью элементарных геометрических преобразований. Все это является важной предпосылкой становления пространственного мышления школьников, исследовательских и творческих умений, геометрической интуиции.
Таким образом, геометрические преобразования представляют одну из содержательных линий школьного курса геометрии. Их изучение позволяет наиболее полно раскрыть практическую значимость, показать область применения геометрических знаний. В то же время изучение геометрических преобразований обеспечивает развитие пространственного, логического, абстрактного мышления, математической интуиции учащихся именно в том возрасте, когда они имеют наиболее ярко выраженные способности к восприятию пространственных форм окружающего мира.
Перемены в жизни общества трансформируют взгляды на роль и место изучения геометрических преобразований в условиях дифференцированного обучения, на содержание программ и систему работы с учащимися профильных классов и классов, непосредственно предшествующих профильным, то есть предпрофильным.
При рассмотрении целей обучения теме «Геометрические преобразования» в 8-9 классах необходимо учитывать общие цели обучения математике, цели обучения геометрии, запросы общества, личностные потребности и возможности учащихся.
Цели обучения математике на современном уровне ее развития определены в работе Г.И. Саранцева:
1. Образовательные цели: овладение системой математических знаний, умений, навыков, дающих представление о предмете математики, ее языке, символике, методе познания, математическом моделировании, алгоритме, периодах развития математики, специальных математических приемах.
2. Воспитательные цели: формирование мировоззрения учащихся, логической и эвристической составляющих мышления, воспитание нравственности, культуры общения, самостоятельности, активности, эстетического воспитания школьников.
3. Практические цели: формирование умений строить математические модели простейших реальных явлений, исследовать явления по заданным моделям, конструировать приложение моделей; приобщение к опыту творческой деятельности и формирование умений применять его, ознакомление с ролью математики в научно-техническом прогрессе, современной науке и производстве.
Геометрические преобразования могут эффективно «работать» на достижение указанных целей.
По мнению В.А. Гусева, при обучении математике необходимо учитывать: 1) выполнение требования получения всеми учащимися основ математических знаний, умений, навыков, которые являются базовой составляющей развивающейся личности каждого школьника; 2) формирование основных стержневых качеств личности, в формировании которых обучение математике играет существенную роль (умственное воспитание, составляющие творческого потенциала, мировоззрение, нравственное и трудовое воспитание); 3) специальные задачи, характерные только для математического образования (устная и письменная математическая речь, использование математических приборов, построение моделей реальных ситуаций, развитие пространственного мышления, математической интуиции и воображения). Геометрические преобразования естественным образом вписываются в достижение этих целей.
Понятие способностей в психологии
Способности - индивидуально-психологические особенности человека, проявляющиеся в деятельности и являющиеся условием успешности ее выполнения. От способностей зависит скорость, глубина, легкость и прочность процесса овладения знаниями, умениями и навыками, но сами они к ним не сводятся. На основе ...
Специфика отбора методов обучения и воспитания детей с отклонениями в
развитии
Методы обучения находятся в существенной зависимости от психологических, возрастных особенностей школьников. Например, выбор методов обучения в начальных классах, особенно в 1, определяется возможностями развития абстрактных форм мышления на основе связи с чувственным опытом ученика. Методы обучен ...
Специфика урока иностранного языка
У урока иностранного языка особенная специфика, которую учитель иностранного языка не может не учитывать. В настоящее время глобальной целью овладения иностранным языком считается приобщение к иной культуре и участие в диалоге культур. Эта цель достигается путем формирования способности к межкульт ...