В отличие от геометрических курсов, в которых понятие движения положено в их основу, в данном учебнике такие виды движения, как симметрия относительно точки и относительно прямой, служат для доказательства теорем, а такие виды движения, как поворот и параллельный перенос являются объектом изучения.
В первом пункте вводится понятие движения: движением называется такое преобразование плоскости, которое не меняет расстояние между парами точек, т.е. если точки А и В в результате движения переходят в точки А’ и В’, то АВ = А’В’. Далее теорема 12.1. (основное свойство движений): результатом двух последовательных движений плоскости является движение плоскости – приводится доказательство теоремы, а затем рассматривают две основные теоремы о движении плоскости также с доказательствами. Теорема 12.2 (основной способ задания движения): любое движение плоскости полностью задается движением трех точек плоскости, не лежащих на одной прямой. И теорема 12.3 (о возможности представления любого движения через осевые симметрии): любое движение плоскости может быть получено с помощью не более чем трех осевых симметрий.
В следующем пункте рассматривают виды движений плоскости. Теорема 12.4. (о представлении параллельного переноса в виде двух симметрии): в результате двух последовательных осевых симметрии с параллельными осями любая точка А плоскости переходит в такую точку А’, что вектор АА’ постоянен для всех точек плоскости.
Такое преобразование называется параллельным переносом. Сам вектор АА’ называется вектором параллельного переноса.
И затем теорема 12.5 (о представлении поворота в виде двух симметрий): пусть две прямые и на плоскости пересекаются в точке О и образуют между собой угол α (α ≤ 90). В результате двух последовательных симметрии относительно прямых и мы получим поворот на угол 2α вокруг точки О. При этом направление поворота то же, что и у поворота на угол α, переводящего прямую в прямую с доказательством.
Здесь же рассматриваются такие темы как «Три осевые симметрии» и «Скользящая симметрия», отмеченные звездочкой, т.е. предназначены для углубленной подготовки. Задачный материал дифференцирован по уровню сложности.
К учебнику прилагается рабочая тетрадь В.Б. Алексеева, В.Я. Галкина и др., в которую включена тема «Преобразования плоскости». В тетради разобраны многие задачи, имеющиеся в учебнике, а также представлены другие задачи. Работа с тетрадью рекомендована строго после изучения материалов учебника. Задачи, содержащиеся в тетради, предполагают разную степень участия ученика в процессе решения. Решения некоторых задач приведены полностью, их надо внимательно прочитать и осознать, для того, чтобы следующие задачи решить по аналогии или с использованием похожих соображений. В решении большинства задач имеются пропуски, которые нужно заполнить: привести ссылку на формулы или теоремы, несложные вычисления. При этом оставленные отдельно слова и фразы помогут понять логику решения. Задания по теме «Преобразования плоскости» выделены в два занятия. В каждом занятии представлены задачи от простых, закрепляющих основные геометрические понятия и факты, до достаточно сложных, что помогает организовать работу учеников, как по базовой программе, так и по программе углубленного изучения движений.
Вид домашних упражнений на отработку умений решать геометрические задачи на
построение
1. Геометрически задачи на построение, содержащие численные данные. Обычно данные величины являются совершенно произвольными. Но когда ученик ознакомился с приемом, посредством которого решаются задачи такого рода, то он обычно треугольник берет произвольных размеров и формы и делит его на число ч ...
Рекомендации учителю
После проведения беседы были сделаны методические рекомендации преподавателю. Важно помнить: чтобы сформировать нравственные, моральные нормы поведения у школьников, общечеловеческие ценности и положительные черты характера, рядом с детьми должны быть взрослые, которые подошли бы к решению данной ...
Двигательная активность и её значение для детей дошкольного возраста
Для обеспечения оптимального двигательного режима, прежде всего, необходимо увеличить физическую нагрузку в процессе предметной деятельности, сохраняя при этом основную цель при её организации: совершенствовании с содержанием предмета, развитие устойчивого интереса, настойчивости, сосредоточенност ...