Математические задачи, решаемые при помощи движений

Страница 1

Существенным элементом структуры познавательного педагогического процесса являются методы обучения. Под методом обучения будем понимать упорядоченный способ взаимосвязанной деятельности учителя и учащихся, направленный на достижение целей обучения. Система методов обучения состоит из общих методов обучения, разработанных дидактикой, и из специальных методов обучения математике, отражающих основные методы познания, используемые в математике.

Для обучения учащихся 8-9 классов геометрическим преобразованиям могут быть использованы различные методы обучения. Наиболее целесообразно в классах, непосредственно предшествующих профильным, и профильных классах использовать метод обучения через задачи. Сущность данного метода состоит в том, что математические задачи выступают как средство обучения и позволяют организовать процесс обучения таким образом, чтобы каждому учащемуся, независимо от его интересов и задатков, дать возможность обучаться по своей индивидуальной траектории.

Задачи делятся на воспроизводящие, которые способствуют выработке и закреплению определенного навыка или умения, и творческие, помогающие выявить и развить способности детей. Именно творческие задачи помогают самовыразиться учащимся, реализовать свои индивидуальные задатки.

Целесообразность введения элементов профилирования в 8-9 классах с помощью системы прикладных задач обосновывается тем, что многие учащиеся с гуманитарными наклонностями, встретившись с задачей математического или физического содержания, не проявляют интереса к ее решению. В то же время, задача исторического, художественного или лингвистического содержания может стать для них более интересной и привлекательной. В этом случае учащимся будет легче установить связи между величинами задачи и выразить их на математическом языке.

В соответствии с мнением Я.И. Груденова, изучение математических положений можно подразделить на три этапа: введение, усвоение и закрепление. На этапе введения учащиеся знакомятся с формулировками и доказательствами предложений. При усвоении происходит запоминание материала, и школьники учатся применять математические предложения в простейших случаях. Закрепление сводится к повторению формулировок и отработке навыков применения к решению задач. Проверка знаний по теме может включаться как элемент в перечисленные этапы или выделяться отдельно.

На протяжении всех этапов изучения материала учащиеся решают математические задачи. На вводном этапе задачи играют роль подготовительных упражнений. При усвоении, закреплении и проверке теории они используются в качестве упражнений в применении знании и отработке практических навыков. Например, перед построением отрезков, симметричных относительно оси, учащимся необходимо восстановить в памяти определение построения точек, симметричных друг другу относительно прямой. Упражнение, предназначенное для учащихся, ориентированных на гуманитарные области знаний, может представлять собой тест на знание данного определения: «Чтобы построить две точки, симметричные друг другу относительно прямой, нужно .». Учащимся необходимо вписать в пропуски соответствующий текст.

Страницы: 1 2 3 4 5 6


Другие статьи:

Сущность понятия «дидактическая игра», её роль в процессе обучения детей младшего школьного возраста
Долгое время в теории и практике дидактическая игра рассматривалась как прием обучения и входила в состав занятий или как игровая деятельность вне отношения к обучению. Последние исследования позволяют использовать дидактические игры как форму обучения. Педагогический опыт показывает, что одним и ...

Содержание и виды учета производственного обучения
Учет производственного обучения можно рассматривать двояко: как систему организационно-педагогических мероприятий, направленных на подведение текущих, периодических и итоговых результатов процесса производственного обучения, и как неотъемлемое звено, органическая часть процесса производственного о ...

Творческие способности учащихся
Много таланта, ума и энергии вложили в разработку педагогических проблем, связанных с творческим развитием личности, в первую очередь личности ребенка, подростка, выдающиеся педагоги 20-х и 30-х годов: А.В. Луначарский, П.П. Блонский, С.Т. Шацкий, Б.Л. Яворский, Б.В. Асафьев, Н.Я. Брюсова. Опираяс ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru