При изложении материала не употребляется термин «обратные функции». Тем самым реализуется принцип доступности изложения учебного материала.
Кроме того, отличительной особенностью именно этого учебника является то, что для решения простейших тригонометрических уравнений (как и для решения однородных уравнений) в учебнике фактически используется алгоритм:
составить общую формулу;
вычислить значение арксинуса (арккосинуса и т.д.);
подставить найденное значение в общую формулу.
При изучении темы «тригонометрические уравнения» рассматриваются также примеры на отбор корней в тригонометрических уравнениях, причем, весь этот материал изучается до введения преобразований тригонометрических выражений.
После темы «Тригонометрические уравнения» изучается тема «Преобразования тригонометрических выражений», где приводятся уже специальные методы решения тригонометрических уравнений.
Можно отметить также, что в задачнике представлен широкий набор задач разного уровня сложности по теме «Тригонометрические уравнения», что позволяет проводить дифференцированную работу с учащимися на уроке.
Главное отличие учебника А.Г. Мордковича от остальных рассмотренных здесь учебников, как было уже сказано выше, состоит в новой схеме изложения материала: «функция – уравнения – преобразования». Данная схема построения материала позволяет в соответствии с уровнем развития учащихся, не перегружая его память большим количеством формул, научить ученика решать тригонометрические уравнения, причем, делать это вполне осознанно, т.е. с пониманием всей сути того, что он делает.
Из всего вышеизложенного можно сделать вывод, о том, что в представленном учебнике решаются все поставленные нами ранее вопросы.
Что же все-таки это такое – арксинус, арккосинус и арктангенс числа?
Почему раньше при решении уравнения мы получали конечное число корней, а теперь – бесконечное?
Откуда в записи корней тригонометрического уравнения появился «хвост» или ?
Что такое в записи корней уравнения?
Как осуществить отбор корней?
Перейдем теперь к практической части нашей работы, которая заключается в разработке системы упражнений по теме «Тригонометрические уравнения».
Коменский о работе учителя
В педагогике Коменского видно место уделяется роли учителя. Ведь само по себе образование не имеет никакого смысла без обучающего субъекта. Но в то время авторитет учителя был ничтожно мал. Коменский же требовал, чтобы, с одной стороны, население относилось с уважением к учителю, а с другой - сам ...
Цели, задачи и содержание занятий факультативного курса обучения
компьютерной графике
Факультативный курс подразумевает углубленный уровень изучения одного из направлений изобразительного искусства – компьютерной графики. При подготовке учащихся информационного профиля приобретает значимость вопрос о реализации межпредметных связей школьного курса изобразительного искусства с инфор ...
Общие педагогические способности
Многочисленные психолого-педагогические исследования, проведенные Н.В. Кузьминой, показали, что саморазвитие педагогов обеспечивается достаточно высоким уровнем сформированности у них таких общих способностей, как:
- гностические;
- проектировочные;
- конструктивные;
- коммуникативные;
- орга ...