6. Перпендикулярные и параллельные прямые и плоскости.
1. |
2. |
3. |
Понятия: Перпендикулярные прямые на плоскости; серединный перпендикуляр к отрезку; перпендикуляр и наклонная, опущенные из точки на прямую; расстояние от точки до прямой; окружность: вписанная в треугольник, описанная около треугольника. Параллельные прямые; секущая; накрест лежащие, соответственные и односторонние углы; угол треугольника; диагональ многоугольника. Элементы четырехугольника; параллелограмм; прямоугольник; квадрат; ромб; трапеция и ее элементы; расстояние между параллельными прямыми. Параллельные прямые в пространстве; скрещивающиеся прямые; параллельные прямая и плоскость; параллельные плоскости и другие. |
Строить: перпендикулярные прямые с помощью угольника и линейки; серединный перпендикуляр к отрезку с помощью линейки и циркуля; параллельные прямые с помощью угольника и линейки; высоту треугольника с помощью угольника; перпендикулярные и параллельные прямые с помощью клетчатой бумаги. Строить четырехугольники: параллелограмм, прямоугольник, квадрат, ромб, трапецию. Выделять в окружающих предметах, на моделях и готовых чертежах: перпендикулярные, параллельные, скрещивающиеся прямые; параллельные, пересекающиеся и перпендикулярные прямые и плоскости; параллельные и перпендикулярные плоскости. Находить на готовых чертежах, используя признаки: параллельные прямые; параллельные и перпендикулярные прямые и плоскости; перпендикулярные плоскости. |
Построение перпендикулярных и параллельных прямых с использованием: линий клетчатой бумаги, линейки и угольника. Деление данного отрезка пополам с помощью линейки и циркуля. Нахождение с помощью угольника и измерительной линейки: расстояния от точки до прямой, расстояния между параллельными прямыми, высоты данного треугольника. |
7. Многогранники и круглые тела
1. |
2. |
3. |
Понятия: геометрическое тело; многогранник и его элементы (вершины, ребра, грани, диагонали); выпуклый многогранник. Пирамида; основание, боковые ребра и грани, высота, развертка пирамиды. Параллелепипед; основание, боковые ребра и грани, высота, развертка параллелепипеда; Прямоугольный параллелепипед; измерения, развертка. Куб. Призма; основание, боковые ребра и грани, высота призмы; прямая и наклонная призмы. Длина окружности. Цилиндр; основания, радиус, образующая, ось, высота, боковая поверхность, развертка цилиндра. Конус; основание, вершина, радиус, образующая, ось, высота, боковая поверхность, развертка. Сфера как фигура вращения. Основные свойства параллелепипеда, прямоугольного параллелепипеда. |
Выделять: модели многогранников и круглых тел в окружающей обстановке, узнавать многогранники и круглые тела по их изображению на чертежах. Находить и называть нужные элементы многогранников и круглых тел на их моделях и изображениях. Находить параллельные и перпендикулярные ребра и грани на моделях и изображениях многогранников. Строить: изображения пирамиды, параллелепипеда, призмы, цилиндра, конуса, шара; развертки многогранника, цилиндра и конуса по заданным условиям. Обозначать многогранники и круглые тела, их элементы на чертежах. Изготовлять модели многогранников, цилиндра и конуса. |
Изображение пирамиды, параллелепипеда, призмы, цилиндра, конуса, шара. Построение нужного многогранника по заданным условиям. Чтение чертежа пространственной фигуры. Обозначение многогранников и круглых тел, их элементов. |
Кроме Г.А. Клековкина есть ряд авторов, которые предлагали свои пропедевтические курсы по геометрии для 5-6 классов. Рассмотрим некоторых из них. Курс наглядной геометрии, предложенный П.А. Карасевым для начальной школы, сохраняющие значение и актуальность для современной школы.
Принципы адаптации диалоговой обучающей системы Фобус к
образовательному процессу
Известно, что обучающий эффект в компьютерных системах учебного назначения может достигаться за счет мультимедийных и диалоговых средств. Достоинство диалоговых систем заключаются в деятельностном подходе к обучению, достоинства которого можно считать признанными. В обучающей системе Фобус основны ...
Теория и методика обучения географии
Какого великого ученого – педагога принято считать основоположником методики обучения географии? Что он сделал для методики географии?
Ответ: Основоположником методики обучения географии в мировом масштабе считают Яна Амоса Коменского. Он впервые указал на важность наблюдений в природе и необходи ...
Базовое
обучение информатике в школе
Появление и начальное становление информатики как науки относится о второй половине прошлого века. Область интересов информатики – это структура и общие свойства информации, а так же вопросы, связанные с процессами поиска, сбора, хранения, преобразования, передачи и использования информации в самы ...