Основные подходы к пропедевтике геометрических знаний

Страница 5

В качестве целей изучения курса автор выделяет:

Развитие геометрических представлений учащихся посредством рисования геометрических фигур и тел изготовления их моделей.

Усвоение начальных приемов черчения с помощью линейки, угольника и циркуля.

Ознакомление со способами прямого и косвенного измерения длин, углов, площадей и объемов.

Усвоение некоторых элементарных сведений по геометрии, полезных в практической жизни и необходимых при изучении других предметов.

Активизация мышления путем постановки и решения геометрических задач.

Введение элементов логического мышления в степени и форме, доступных возрасту учащихся.

Развитие речи – письменной и устной – в области, относящейся к пространственным представлениям детей.

Автор считает необходимым познакомить учащихся с плоскими фигурами, например, среди них есть трапеция и параллелограмм, с их важнейшими свойствами и с пространными телами. Он не ограничивается лишь измерением длин, площадей и объемов этих геометрических объектов – это одна из линий предлагаемого им курса. Рассматриваются понятия равносоставленности и равновеликости, вычисляются площади трапеции, ромба, треугольника, причем не по выведенному правилу или формуле, а путем перекраивания этих фигур в равновеликие прямоугольники.

В предложенной методике активно и интересно используются свойства клетчатой бумаги для перерисовывания фигур, их построения, перекраивания, измерения длины и площади и др. Помимо построений на клетчатой бумаге, учащиеся знакомятся и с построениями на гладкой бумаге с использованием чертежных инструментов. Одним из основных типов задач здесь является построение фигур путем перегибания листа бумаги.

Отбор содержания и методика его изучения происходят в соответствии со следующими принципами.

1. Процесс обучения должен строиться не только в зависимости от содержания самого геометрического материала, но и от психологических особенностей детского возраста, и от общих целей образования.

2. Основными методическими принципами построения курса наглядной геометрии являются наглядность и максимальное количество практических упражнений конструктивного и изобразительного характера.

3. Отказ от дедуктивно-логического метода доказательства геометрических положений. В основу преподавания должен быть положен индуктивный метод, основанный на наглядном и практическом изучении конкретных фактов и последующем их обобщении.

4. Движение – важнейший фактор, как создания геометрических форм, так и уяснения их свойств.

5. Построение курса и метод его преподавания должны идти в развитии геометрического мышления от простого к сложному, от конкретного к отвлеченному.

6. В учебной работе необходимо задействовать все виды памяти: зрительную, моторную, слуховую.

7. Необходимо отказаться от заучивания определений, правил и др. Вместо этого необходимо вводить «живое описание» детьми своих наблюдений, подмеченных геометрических свойств.

К недостаткам рассмотренного подхода можно отнести отсутствие в курсе пространственных геометрических объектов.

Следует отметить, что многие идеи, высказанные П.А. Карасевым, остались нереализованными на том уровне развития теории обучения, так как школа тех лет ориентировалась в основном на репродуктивные методы обучения и не была готова к организации самостоятельной исследовательской деятельности учащихся по изучению геометрических объектов. Переориентация современной методической системы обучения на приоритет развивающей функции обучения потребовала, во-первых, пересмотра содержания геометрического образования и, во-вторых, нового структурирования всей геометрической линии.

Следующий автор – В.А. Гусев. В своей программе автор реализует идею фузионизма. Отличительной чертой данной программы является параллельное изучение планиметрии и стереометрии - плоские фигуры и их свойства чаще всего изучаются не сами по себе, а как части пространственных геометрических фигур. Курс геометрии в 5-6 классах направлен на всестороннее индивидуальное развитие учащихся с учетом их способностей и возможностей. В процессе изучения геометрии целенаправленно реализуется формирование умственного развития учащихся через отработку конкретных приемов мыслительной деятельности: прежде всего синтеза и анализа, затем абстрагирования, сравнения, обобщения и аналогии. Логика выступает как средство подтверждения наглядности и практической значимости. Наглядность в изложении курса является приоритетной. Автор предлагает множество геометрических задач на развитие пространственного воображения, задач творческого и творческо-поискового, исследовательского характера, что должно способствовать развитию геометрического мышления учащихся.

Страницы: 1 2 3 4 5 6


Другие статьи:

Эстетическое воспитание ребенка средствами компьютерной графики
Ребенок входит в жизнь распахнутый к принятию красоты. Мамин голос, руки, глаза, слова прекрасны для всех и навсегда. Это точка отсчета. Начало всех начал. Отсюда ведут пути к светлой радости открытия красоты; к способности видеть, ценить и творить прекрасное. Казалось бы, в эстетической области ...

Педагогические принципы
При организации учебной деятельности учащихся, факультативных занятий и внеурочной деятельности следует руководствоваться объективными законами, отражающими существенные и необходимые связи между явлениями и факторами обучения. Эти законы дают учителям понимание общей картины объективного развития ...

Современная классификация ограниченных возможностей человека. Основания этих классификаций
Принято условно разделять ограничения функций по следующим категория: · нарушения статодинамической функции (двигательной), · нарушения функций кровообращения, дыхания, пищеварения, выделения, обмена веществ и энергии, внутренней секреции, · сенсорные (зрения, слуха, обоняния, осязания), · пси ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru