Чтобы умножить произведение нескольких чисел на какое-либо число, достаточно один из сомножителей умножить на это число и полученное произведение последовательно умножить на другие сомножители.
4. Умножение числа на произведение.
1) (следствие сочетательного закона) = (сочетательность умножения) = 168000.
Чтобы умножить число на произведение нескольких чисел, достаточно умножить это число на первый сомножитель, полученное произведение – на второй, затем новое произведение – на третий и т.д. до конца.
К указанному способу близок прием умножения посредством замены множителя соответствующим произведением (иногда это называют последовательным умножением).
2).
5. Умножение произведения на произведение.
(умножение числа на произведение) = (порядок действий) = (переместительность) (сочетательность) = .
Здесь применено следующее правило: чтобы умножить произведение нескольких чисел на другое произведение, достаточно последовательно перемножить все сомножители обоих произведений.
2.2.4. Умножение, сложение и вычитание
1. Распределительный закон умножения по отношению к сложению (умножение суммы чисел на число).
.
Чтобы умножить сумму нескольких чисел на данное число, достаточно умножить каждое слагаемое на это число и полученные произведения сложить.
К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя или множимого.
1);
2).
2. Распределительный закон умножения по отношению к вычитанию (умножение разности чисел на число).
1).
Чтобы умножить разность чисел на какое-нибудь число, достаточно умножить на это число отдельно уменьшаемое и вычитаемое и из первого произведения вычесть второе.
2) .
К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя.
3. Умножение суммы на сумму.
(умножение числа на сумму) = .
Чтобы умножить сумму нескольких чисел на другую сумму, можно каждое слагаемое первой суммы умножить на каждое слагаемое второй суммы и полученные произведения сложить.
Умножение и деление
1. Перестановка членов ряда умножений и делений (переместительность ряда умножений и делений).
1) (если данное число разделить на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = (переместительность умножения) = (если данное число умножить на какое-нибудь число, отличное от 0, и затем полученное произведение разделить на это же число, то данное число останется без изменения) =512 (правило порядка действий: действия одной и той же ступени (при отсутствии скобок) выполняются в том порядке, в каком они записаны).
2) 486: 9: 2 = 486: : 9: 2 (если данное число разделить на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = 486: 2: : 2 (переместительность членов ряда умножений и делений) = 486: 2: 9 (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это число, то данное число останется без изменения) = 243: 9 = 27.
Опытно-экспериментальная работа по
исследованию сюжетно-ролевой игры детей старшего дошкольного возраста
Опытно-экспериментальная работа проводилась в старшей группе дошкольного возраста ДОУ №121 города Магнитогорска. В исследовании приняли участие 20 детей старшего дошкольного возраста. Возраст исследуемых детей 5-7 лет.
Гипотеза: Анализ психолого-педагогической литературы позволил мне предположить ...
Россия: первые шаги в «общество знаний»
По разным причинам СССР не смог вовремя выйти из холодной войны, изменить цели своего развития, проект своего будущего так, как, например, сделал это Китай, и его правопреемнице, России, приходится начинать конкурентную борьбу за место под новым мировым экономическим солнцем заново. Определяющим з ...
Описание главного окна модуля преподавателя
Окно Модуля преподавателя обеспечивает преподавателя средствами управления учебным процессом. Структура оформления окна Модуля преподавателя соответствует стандартам Windows.
Основными элементами управления являются:
Строка заголовка;
Строка меню;
Панель инструментов (назначение инструментов с ...