Арифметическое дополнение. Замена сложения вычитанием и вычитания сложением

Информация о педагогике » Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике » Арифметическое дополнение. Замена сложения вычитанием и вычитания сложением

Страница 1

а) Арифметическим дополнением числа называется число, которое нужно прибавить к данному числу, чтобы получить единицу непосредственно высшего разряда. Дополнением числа 9247 будет число, которое надо прибавить к 9247, чтобы получить 10000. Поэтому, чтобы найти дополнение какого-либо числа, надо вычесть это число из единицы со столькими нулями, сколько в числе цифр: 10000 = 753. Таким образом, для получения дополнений надо все цифры данного числа вычитать из 9, за исключением последней справа значащей цифры, которую вычитать из 10. Если находят дополнение числа с нулями на конце, то приписывают столько нулей, сколько их было за последней значащей цифрой.

В замене сложения вычитанием первое слагаемое вычитаем из ближайшего разрядного числа (ищем его дополнение до разрядного числа), полученная разность вычитается из второго слагаемого и результат складывается с разрядным числом.

89 + 47:

1) 100; 2) ; 3) 100 + 36= 136.

Способ замены сложения вычитанием удобен в том случае, когда дополнение первого слагаемого до разрядного числа легко вычитается из второго слагаемого.

б) В замене вычитания сложением находим дополнение вычитаемого до ближайшего разрядного числа и к нему прибавляем разность между уменьшаемым и этим разрядным числом.

112 – 67:

1) ; 2); 3) 12 + 33 = 45.

Этот способ удобен, когда единицы, десятки и т.д. вычитаемого больше единиц, десятков и т.д. уменьшаемого.

а) Для одновременного производства сложения и вычитания можно вместо вычитаемых взять их дополнения до одного и того же числа, изображенного единицей с нулями, найти сумму новых слагаемых, а затем ее исправить, вычтя числа, до которых взяты дополнения. . Заменим все три вычитаемых дополнением каждого до 1000 и вычтем столько тысяч, сколько взято дополнений, т.е. 3000: 923 + 804 + 711 + 602 = 40.

Этот способ удобен в том случае, когда цифры вычитаемых больше пяти.

б) Когда же цифры вычитаемых меньше пяти, то можно не заменять вычитаемые их дополнениями. В таком случае следует подписать числа с их знаками одно под другим.

Умножение и деление

Мы знаем, что если один из сомножителей увеличить в несколько раз, а другой уменьшить во столько же раз, то произведение не изменится. На этом свойстве основывается применение сокращенных способов умножения на 5, 25, 125 и на другие числа, представляющие собой делители числа, изображаемого единицей с нулями.

1. Умножение на 5, 50, 500 и т.д.

Умножение числа на 5, 50, 500 и т.д. заменяется умножением на 10, 100, 1000 и т.д. с последующим делением на 2 полученного произведения. Или: сначала множимое делится на 2, а потом полученное частное умножается на 10, 100, 1000 и т.д.

1) ; ;

2) ;

3) .

2. Умножение на 25, 250, 2500 и т.д.

При умножении числа на 25, 250, 2500 и т.д. достаточно данное число умножить на 100, 1000, 10000 и т.д. и полученный результат разделить на 4. Или: сначала данное число разделить на 1, затем полученное частное умножить на 100, 1000, 10000 и т.д.

1) ;

Страницы: 1 2 3 4


Другие статьи:

История возникновения профильного обучения в России
Одна из первых попыток осуществления дифференциации обучения в школе относится к 1864 г. Соответствующий указ предусматривал организацию гимназий двух типов: классическая (цель - подготовка в университет) и реальная (цель - подготовка к практической деятельности и поступлению в специализированные ...

Математические основы изучения умножения и деления в начальной школе
Перед тем, как перейти к рассмотрению методики изучения табличных случаев умножения и деления в начальных классах, необходимо выявить математические основы изучения арифметических действий, установить их важнейшие законы и правила, также взаимосвязь их компонентов и результатов. Рассмотрим сначал ...

Декоративно-оформительское искусство в школе
В современной системе обучения и воспитания в центре внимания проблемы гармонического развития личности. Главная цель образовательной области “Технология” подготовка учащихся к самостоятельной трудовой жизни в условиях рыночной экономики. Для достижения этой цели очень важно подготовить учащихся к ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru