В результате изучения материала учащиеся должны:
знать определение движения, его свойства; определения точек и фигур, симметричных относительно данной точки, симметричных относительно прямой; определение поворота, формулы, задающие параллельный перенос и геометрические свойства параллельного переноса;
уметь применять свойства движений для распознавания фигур, в которые переходят данные фигуры при движении, строить точки и простейшие фигуры, симметричные данным относительно данной точки и данной прямой, приводить примеры фигур, имеющих центр симметрии или ось симметрии, применять свойства движения в решении задач на симметрию фигур; строить образы простейших фигур при повороте и параллельном переносе; выявлять сонаправленные и противоположно направленные лучи в рассматриваемых конфигурациях.
Планирование изучения материала:
Номер пункта. |
Содержание материала. |
Количество часов. |
8 класс. § 9. Движение. |
12 ч. | |
82, 83 84, 85 86 87, 88 89, 90 |
Преобразование фигур. Свойства движения. Симметрия относительно точки. Симметрия относительно прямой. Контрольная работа. Поворот. Параллельный перенос и его свойства. Существование и единственность параллельного переноса. Сонаправленность полупрямых. Равенство фигур. |
2 ч. 3 ч. 1 ч. 1 ч. 3 ч. 2 ч. |
В §9 понятие «преобразование» вводится на наглядно-интуитивном уровне: «Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной». Соответственно, движение понимается как преобразование одной фигуры в другую, если оно сохраняет расстояние между точками. Важно подчеркнуть, что в учебнике А.В. Погорелова рассматриваются преобразования не всей плоскости, а только фигур. В этом случае неизвестно что происходит с остальными точками плоскости, в отличие от преобразования плоскости, где для каждой точки плоскости можно указать ее образ и прообраз. Возможно, рассмотрение преобразований фигур, а не плоскости связано с толкованием понятия движения с механической точки зрения.
Еще одна особенность учебника А.В. Погорелова состоит в том, что определение преобразований и способ построения фигур при преобразованиях как бы слиты воедино. Определения обладают высокой степенью наглядности, чем позволяют воображению легко конструировать необходимые образы.
Далее рассматриваются теоретические основы свойств движений, симметрии относительно точки и прямой. Все вводимые понятия и доказательства теорем достаточно полно проиллюстрированы, но не приводится разбор конкретных задач, чего нельзя сказать о рассмотрении вопроса о повороте плоскости около данной точки. После рассмотрения теоретических сведений представлена решенная задача на построение точки (фигуры), в которую переходит точка (отрезок) при повороте около точки О на угол 60° по часовой стрелке. Некоторое внимание уделено вопросу использования метода координат в изучении свойств преобразований, например параллельного переноса.
Современные этапы экономики специального образования в России
За счет государственных именных образовательных финансовых обязательств производится оплата затрат на создание специальных условий для получения образования лицами с ограниченными возможностями здоровья, обеспечение указанных лиц учебниками, учебными пособиями, индивидуальными техническими средств ...
Понятие способностей в психологии
Способности - индивидуально-психологические особенности человека, проявляющиеся в деятельности и являющиеся условием успешности ее выполнения. От способностей зависит скорость, глубина, легкость и прочность процесса овладения знаниями, умениями и навыками, но сами они к ним не сводятся. На основе ...
Предмет, цель и задачи логопедии
Логопедия — это наука о нарушениях речи, о методах их предупреждения, выявления и устранения средствами специального обучения и воспитания.
Логопедия изучает причины, механизмы, симптоматику, течение, структуру нарушений речевой деятельности, систему коррекционного воздействия.
Предметом логопед ...