«м» Отрезок данной длины перемещается параллельно самому себе так, что один его конец скользит по окружности О (r). Докажите, что другой конец отрезка описывает при этом окружность, равную данной.
Приведенные выше задачи к каждому разделу темы «Геометрические преобразования плоскости», целесообразно предоставлять учащимся в форме самостоятельной работы, условия которой состоят в следующем: самостоятельная работа состоит из 9 задач и считается выполненной в том случае, если решены три любые задания из девяти предложенных. Условные обозначения задач - «г», «е», «м» - из этических соображений целесообразно не указывать.
Целью такой работы является формирование у учащихся умений самостоятельно приобретать и применять знания в соответствии со своими возможностями, интересами, устремлениями. В результате выполнения самостоятельных работ такого плана учитель может судить о познавательных интересах и способностях учащихся класса
Итоговая работа по теме «Геометрические преобразования плоскости» состоит из пяти заданий. Первые три - содержат основные вопросы по теме, которые составляют общеобразовательный минимум и знание которых необходимо продемонстрировать всем учащимся независимо от их интересов. Первые четыре задания рекомендовано решить учащимся группы естественнонаучного направления. Всю работу - учащимся группы математического направления.
Реализация идеи геометрических преобразований в обучении способствует формированию мировоззрения учащихся, что крайне необходимо при подготовке учащихся 8-9 классов к выбору профиля обучения в 10-11 классах.
Например, в ходе изучения осевой и центральной симметрии учащиеся получают представление о симметрии в окружающем мире, а также развивается их пространственное и конструктивное мышление. Школьники учатся применять знания о данном геометрическом преобразовании в практической деятельности, которая им наиболее интересна. В результате изучения видов симметрии учащиеся должны овладеть умениями строить ось и центр симметрии, распознавать симметричные фигуры, проводить оси и центры симметрии часто встречающихся фигур (квадрата, прямоугольника, круга), строить в простых случаях фигуры, симметричные данным относительно прямой и точки (точку, отрезок, треугольник, окружность).
В результате можно сделать вывод о том, что увеличение упражнений разнообразного содержания при обучении геометрическим преобразованиям в 8-9 классах обеспечивает усвоение дополнительного теоретического и практического материала на геометрические преобразования (понятий, теорем); способствует овладению школьниками методом геометрических преобразований; ориентирует ученика на поиск различных решений; усиливает прикладную направленность курса; придает деятельности школьников исследовательскую направленность.
Обработка результатов по основным тестам
Для практического исследования была выбрана гимназия города Тюкалинска, где и проводилась работа с социальным педагогом, родителями и группой детей-подростков.
Испытуемым были предложены тесты, опросники и анкеты.
Исходными (опорными) данными для проведения опроса явились:
субъект социальной пе ...
Разработка урока изучения нового материала для 10-го класса по теме «Решение
тригонометрических уравнений»
Общая тема: «Тригонометрические функции».
Тема урока: «Решение тригонометрических уравнений»
Тип урока: Изучение нового материала.
Цели:
Ввести способы решения тригонометрических уравнений, приводящиеся к алгебраическим уравнениям.
Развивать представление о тригонометрических уравнениях, как ...
Открытие сеансов на рабочих местах
Для выполнения сеанса обучения на Рабочем месте в Модуле преподавателя необходимо выполнить:
Подготовить их к открытию, для этого:
Определить вариант обучения - установить “галочку” в команде Сервис | Базовый (рис. 9) для укороченного курса обучения или снять “галочку” для расширенного курса обу ...