Задачи прикладного характера, решаемые при помощи движений

Информация о педагогике » Использование компьютерных технологий в изучении наглядной геометрии » Задачи прикладного характера, решаемые при помощи движений

Страница 4

«м» Отрезок данной длины перемещается параллельно самому себе так, что один его конец скользит по окружности О (r). Докажите, что другой конец отрезка описывает при этом окружность, равную данной.

Приведенные выше задачи к каждому разделу темы «Геометрические преобразования плоскости», целесообразно предоставлять учащимся в форме самостоятельной работы, условия которой состоят в следующем: самостоятельная работа состоит из 9 задач и считается выполненной в том случае, если решены три любые задания из девяти предложенных. Условные обозначения задач - «г», «е», «м» - из этических соображений целесообразно не указывать.

Целью такой работы является формирование у учащихся умений самостоятельно приобретать и применять знания в соответствии со своими возможностями, интересами, устремлениями. В результате выполнения самостоятельных работ такого плана учитель может судить о познавательных интересах и способностях учащихся класса

Итоговая работа по теме «Геометрические преобразования плоскости» состоит из пяти заданий. Первые три - содержат основные вопросы по теме, которые составляют общеобразовательный минимум и знание которых необходимо продемонстрировать всем учащимся независимо от их интересов. Первые четыре задания рекомендовано решить учащимся группы естественнонаучного направления. Всю работу - учащимся группы математического направления.

Реализация идеи геометрических преобразований в обучении способствует формированию мировоззрения учащихся, что крайне необходимо при подготовке учащихся 8-9 классов к выбору профиля обучения в 10-11 классах.

Например, в ходе изучения осевой и центральной симметрии учащиеся получают представление о симметрии в окружающем мире, а также развивается их пространственное и конструктивное мышление. Школьники учатся применять знания о данном геометрическом преобразовании в практической деятельности, которая им наиболее интересна. В результате изучения видов симметрии учащиеся должны овладеть умениями строить ось и центр симметрии, распознавать симметричные фигуры, проводить оси и центры симметрии часто встречающихся фигур (квадрата, прямоугольника, круга), строить в простых случаях фигуры, симметричные данным относительно прямой и точки (точку, отрезок, треугольник, окружность).

В результате можно сделать вывод о том, что увеличение упражнений разнообразного содержания при обучении геометрическим преобразованиям в 8-9 классах обеспечивает усвоение дополнительного теоретического и практического материала на геометрические преобразования (понятий, теорем); способствует овладению школьниками методом геометрических преобразований; ориентирует ученика на поиск различных решений; усиливает прикладную направленность курса; придает деятельности школьников исследовательскую направленность.

Страницы: 1 2 3 4 


Другие статьи:

Психолого-педагогические особенности детей с ЗПР
Задержка психического развития (ЗПР) - синдром временного отставания развития психики в целом или отдельных ее функций, замедление темпа реализации потенциальных возможностей организма, часто обнаруживается при поступлении в школу и выражается в недостаточности общего запаса знаний, ограниченности ...

Обоснование выбора темы базового курса школьной информатики
Для рассмотрения приемов организации внимания на уроках информатики возьмем тему «Алгоритмизация на базе среды программирования ЛогоМиры». Данная тема содержится в обязательном минимуме содержания образования по информатике, рекомендованный Министерством образования Российской Федерации, и определ ...

Система упражнений по теме «Треугольники и четырехугольники»
Данная система упражнений основывается на принципах: Принцип наглядно-деятельностной геометрии. Принцип познания законов природы средствами геометрии. Принцип развития образного мышления и изобразительных умений. Согласно учебнику по математике для 5 класса общеобразовательных учебных заведени ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru