Задачи прикладного характера, решаемые при помощи движений

Информация о педагогике » Использование компьютерных технологий в изучении наглядной геометрии » Задачи прикладного характера, решаемые при помощи движений

Страница 4

«м» Отрезок данной длины перемещается параллельно самому себе так, что один его конец скользит по окружности О (r). Докажите, что другой конец отрезка описывает при этом окружность, равную данной.

Приведенные выше задачи к каждому разделу темы «Геометрические преобразования плоскости», целесообразно предоставлять учащимся в форме самостоятельной работы, условия которой состоят в следующем: самостоятельная работа состоит из 9 задач и считается выполненной в том случае, если решены три любые задания из девяти предложенных. Условные обозначения задач - «г», «е», «м» - из этических соображений целесообразно не указывать.

Целью такой работы является формирование у учащихся умений самостоятельно приобретать и применять знания в соответствии со своими возможностями, интересами, устремлениями. В результате выполнения самостоятельных работ такого плана учитель может судить о познавательных интересах и способностях учащихся класса

Итоговая работа по теме «Геометрические преобразования плоскости» состоит из пяти заданий. Первые три - содержат основные вопросы по теме, которые составляют общеобразовательный минимум и знание которых необходимо продемонстрировать всем учащимся независимо от их интересов. Первые четыре задания рекомендовано решить учащимся группы естественнонаучного направления. Всю работу - учащимся группы математического направления.

Реализация идеи геометрических преобразований в обучении способствует формированию мировоззрения учащихся, что крайне необходимо при подготовке учащихся 8-9 классов к выбору профиля обучения в 10-11 классах.

Например, в ходе изучения осевой и центральной симметрии учащиеся получают представление о симметрии в окружающем мире, а также развивается их пространственное и конструктивное мышление. Школьники учатся применять знания о данном геометрическом преобразовании в практической деятельности, которая им наиболее интересна. В результате изучения видов симметрии учащиеся должны овладеть умениями строить ось и центр симметрии, распознавать симметричные фигуры, проводить оси и центры симметрии часто встречающихся фигур (квадрата, прямоугольника, круга), строить в простых случаях фигуры, симметричные данным относительно прямой и точки (точку, отрезок, треугольник, окружность).

В результате можно сделать вывод о том, что увеличение упражнений разнообразного содержания при обучении геометрическим преобразованиям в 8-9 классах обеспечивает усвоение дополнительного теоретического и практического материала на геометрические преобразования (понятий, теорем); способствует овладению школьниками методом геометрических преобразований; ориентирует ученика на поиск различных решений; усиливает прикладную направленность курса; придает деятельности школьников исследовательскую направленность.

Страницы: 1 2 3 4 


Другие статьи:

Цели, задачи и функции самостоятельной работы учащихся
Весь процесс обучения направлен на достижение определенной цели - формирование и воспитание многогранной, творческой личности, с сложившимися приоритетами, правилами поведения, с системой ценностей и верными представлениями о мире в целом. Поэтому любая деятельность учителя должна носить целенапра ...

Педагогическая деятельность
Педагогическая деятельность всегда предполагает воздействия, целью которых являются качественные изменения в жизни людей. Эти воздействия ориентированы на упорядочение системы отношений, т.е. педагог, прежде всего, реализует управленческие задачи по отношению к конкретному человеку. Наряду с возде ...

Различные подходы к проблеме исследования педагогической запущенности
Проблема педагогической запущенности достаточно хорошо изучена в педагогической науке. Существует много работ по данной проблеме. Но в научно-педагогической литературе нет однозначного толкования понятия «педагогическая запущенность». Само понятие "педагогически запущенные" в современно ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru