.
Проверочная работа.
Вариант №1
;
;
.
Вариант №2
;
;
.
Критерии оценивания:
«5» - верно выполнены все задания;
«4» - верно выполнены любые два задания;
«3» - верно выполнено любое одно задание.
Занятие №5 Тема: «Использование понятия области изменения функции при решении уравнений».
Цели:
а) изучить теоретический материал по теме «Использование понятия области изменения функции при решении уравнений»;
б) познакомить с основными способами определения множества значений функции.
Ход занятия:
Проверка домашнего задания. На доске записывается ответ к каждому заданию. Если у большинства учащихся есть затруднения в решении, то задание разбирается на доске. Если задание вызвало затруднение у небольшой группы учащихся, то к каждому из них «приставляется» ученик, выполнивший задание, с целью объяснить решение.
Лекция по теме «Использование понятия области изменения функции при решении уравнений».
Утверждение 1. Пусть дано уравнение , причем функции
как правило разнородные. Если множества значений этих функций имеют общую точку (или небольшое конечное число общих точек)
;
, то уравнение равносильно системе
.
В системе можно решить только одно уравнение, а второе проверить подстановкой получившихся корней.
Утверждение 2. Если области изменения функций, входящих в уравнение (неравенство), не имеют общих точек, то уравнение (неравенство) решений не имеет.
Существует несколько способов определения множества значений функций. Рассмотрим их на примерах.
Пример 1. Найти область изменения функции .
Для решения задачи построим схему графика с помощью производной:
1) область определения функции y промежуток ;
2) с помощью производной найдем экстремумы. В точке функция принимает свое максимальное значение;
3) найдем значения функции в точке максимума и на концах отрезка области определения: ;
;
.
4) таким образом, получаем .
Пример 2. Найти область изменения функции .
Преобразуем функцию к виду .
Область изменения этой функции находится непосредственно: .
Для нахождения множества значений некоторых тригонометрических функций удобно пользоваться следующим фактом.
Утверждение 3. Функция вида изменяется на отрезке
Пример 3. Найти область изменения функции .
Введем замену и рассмотрим функцию
,
. Ее область изменения с помощью производной найти гораздо проще.
.
Методические рекомендации для учителей математики средней школы
В этом параграфе сформулированы методические рекомендации для учителей математики по использованию коллективной формы организации учебно-воспитательного процесса. При этом был учтен опыт, полученный в период педагогической практики в школе на III – V курсах.
Активист. Ему нравится учиться. Он люб ...
Педагогическая теория Коменского. Структура и содержание «Великой дидактики»
Центральным трудом педагогической теории Яна Амоса Коменского по праву считается «Великая дидактика». Задуманная им еще в молодости, она вынашивалась долгие годы, обрастала различными дополнениями и приложениями. Для своего времени она представляла собой поистине революционный учебник педагогичес ...
Анализ средств и методов реализации профессиональной ориентации в школе
Большинство российских школ проводят некоторые работы по профессиональной ориентации школьников. Одной из таких работ является компьютерное тестирование учащихся 8–11 классов на основании приказа Министерства Образования и Науки Республики Татарстан. В тестирование входят тесты по определению проф ...