Рассмотрим на примере, как при решении уравнений знание области изменения функций, в него входящих, упрощает поиски корней.
Пример 3. Решить уравнение
Рассмотрим функции, стоящие в левой и правой частях уравнения, . Найдем их множество значений
. Воспользуемся утверждением 1: так как множества значений имеет общую точку 2, от уравнения можно перейти к системе
. Решением системы, а, значит, и исходного уравнения является
.
Утверждение 4. Пусть дано неравенство . Если множества значений этих функций имеют общую точку
;
, то неравенство равносильно системе
.
Пример 4. Решить неравенство .
ОДЗ неравенства есть все действительные x, кроме -1. Разобьем ОДЗ на три промежутка и рассмотрим неравенство на каждом из этих промежутков. На первом и третьем промежутках неравенство выполняется для любого x:
(
);
(
);
(
). Следовательно, оба промежутка являются решением неравенства. На втором промежутке
, то есть неравенство решений не имеет. Исходя из этого получаем решением неравенства
.
Постановка домашнего задания.
1) Выучить теоретический материал.
2) Найти множество значений функций:
а); б)
.
3) Решить уравнение .
Занятие №6 Тема: «Использование понятия области изменения функции при решении уравнений».
Цель: закрепить знания по теме «Использование понятия области изменения функции при решении уравнений».
Ход занятия:
Проверка домашнего задания. До начала занятия один из учеников записывает домашнее задание на доске учитель и другие ученики проверяют решение.
Решение задач. На доске написан список задач. Учащиеся по одному решают у доски. Учитель напоминает, что данные уравнения и неравенства решаются с использованием множества значений функций, в них входящих.
;
;
;
;
;
;
;
;
;
.
Подведение итогов занятия.
Учитель выставляет баллы за занятие: 1 балл за решение домашнего задания, по одному баллу за решение задач у доски
Дидактические принципы специальной педагогики, их сущность и специфика
реализации
Дидактическая сторона опыта профессиональной деятельности педагога дополнительного образования является для нас предметом специального педагогического анализа. Мы видим в дидактической компетентности, непрерывно совершенствуемой и обогащаемой, ресурсы развития педагогического профессионализма. Сег ...
Происхождение названия Орша. Версия первая
Говоря о происхождении названия Орша, необходимо очень осторожно и критически относится к версии , которая связывает его со словом “рэшутай”(орешник). На сегодняшний день нет подтверждающих сведений об как будто больших зарослях орешника в прошлом на берегу Ршы , как в прошлом, бесспорно , называл ...
Восприятие художественной литературы дошкольниками
Литературные произведения, созданные специально для юных читателей, а также прочно вошедшие в круг их чтения из устно-поэтического народного творчества и из литературы для взрослых, составляют в совокупности детскую литературу. Детская литература как часть общей литературы является искусством слов ...