Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.
Рассмотрим виды домашних упражнений, которые можно предложить учащимся.
Пропедевтический вид домашних упражнений для решения конкретных задач
1. Простейшие графические построения.
В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.
2. Построить угол (без транспортира)
плоскость , если известно, что
.
3. Построение отрезков, определенных алгебраическими формулами.
4. Установление связи между данными геометрическими образами.
Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.
5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:
1) указать возможные конфигурации следующих геометрических образов: … .
2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы
3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,
4) дать различные конфигурации трех окружностей.
Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.
a. Одна общая точка
b. Две общие точки
c. Три общие точки
d. Четыре общи точки
e. Пять общих точек
f. Шесть общих точек
g. Бесконечно много общих точек
Математические основы изучения умножения и деления в
начальной школе
Перед тем, как перейти к рассмотрению методики изучения табличных случаев умножения и деления в начальных классах, необходимо выявить математические основы изучения арифметических действий, установить их важнейшие законы и правила, также взаимосвязь их компонентов и результатов.
Рассмотрим сначал ...
Разработка урока изучения нового материала для 10-го класса по теме «Решение
тригонометрических уравнений»
Общая тема: «Тригонометрические функции».
Тема урока: «Решение тригонометрических уравнений»
Тип урока: Изучение нового материала.
Цели:
Ввести способы решения тригонометрических уравнений, приводящиеся к алгебраическим уравнениям.
Развивать представление о тригонометрических уравнениях, как ...
Развитие речи на уроках физики
Физическая компонента школьного образования наряду с гуманитарной, социально-экономической, математической и технологической должна обеспечивать всестороннее развитие личности школьника. Но если рассмотреть разнообразные учебные программы и учебники, то можно заметить неувязки между ними и образов ...