Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.
Рассмотрим виды домашних упражнений, которые можно предложить учащимся.
Пропедевтический вид домашних упражнений для решения конкретных задач
1. Простейшие графические построения.
В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.
2. Построить угол (без транспортира)
плоскость , если известно, что
.
3. Построение отрезков, определенных алгебраическими формулами.
4. Установление связи между данными геометрическими образами.
Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.
5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:
1) указать возможные конфигурации следующих геометрических образов: … .
2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы
3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,
4) дать различные конфигурации трех окружностей.
Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.
a. Одна общая точка
b. Две общие точки
c. Три общие точки
d. Четыре общи точки
e. Пять общих точек
f. Шесть общих точек
g. Бесконечно много общих точек
Работа с программой Фобус на Рабочем месте
Программа Фобус обеспечивает обучение и контроль знаний на Рабочем месте.
Окно программы Фобус (рис. 23) предназначено для работы учащегося.
Рис. 23. Окно программы Фобус, содержащее значки практикумов
Оформление окна Модуля преподавателя соответствует стандартам Windows:
Строка заголовка;
...
Конструирование по модели
Конструирование по модели, разработанное А.Н. Миреновой и использованное в исследовании А.Р. Лурии, заключается в следующем. Детям в качестве образца предъявляют модель, в которой очертание отдельных составляющих ее элементов скрыто от ребенка (в качестве модели может выступать конструкция, обклее ...
Фрагмент урока для 6-го класса по теме «Сложение и вычитание дробей с
разными знаменателями»
Комментарии к уроку
Тип данного урока – обобщение и систематизация знаний. Его основная цель – закрепить основные понятия, связанные со сложением и вычитанием дробей с разными знаменателями.
Приведенный способ применения коллективной формы учебной деятельности учащихся подходит как для данной те ...