Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.
Рассмотрим виды домашних упражнений, которые можно предложить учащимся.
Пропедевтический вид домашних упражнений для решения конкретных задач
1. Простейшие графические построения.
В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.
2. Построить угол (без транспортира)
плоскость , если известно, что
.
3. Построение отрезков, определенных алгебраическими формулами.
4. Установление связи между данными геометрическими образами.
Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.
5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:
1) указать возможные конфигурации следующих геометрических образов: … .
2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы
3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,
4) дать различные конфигурации трех окружностей.
Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.
a. Одна общая точка
b. Две общие точки
c. Три общие точки
d. Четыре общи точки
e. Пять общих точек
f. Шесть общих точек
g. Бесконечно много общих точек
Педагогическое взаимодействие
Взаимодействие – философская категория, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность, изменение состояния, взаимопереход, а также порождение одним объектом другого. К общим свойствам всех педагогических явлений относится взаимодействие учителя и уче ...
Коммуникативные игры
«Сиамские близнецы»
Цель: развитие концентрации внимания, сплочение группы.
Спросите у ребенка, знает ли он, кто такие сиамские близнецы. Если он об этом не слышал, расскажите ему, что очень редко, но все же случается, что рождаются сразу не просто два ребенка, а дети, сросшиеся между собой. Что ...
Диагностика нервно-психического развития детей
раннего возраста
Диагностика нервно-психического развития проводилась на базе МДОУ Детский сад II категории №368, в общеразвивающей группе «Солнышко» (группа детей в возрасте 2 лет). Для диагностики нервно-психического развития детей использовалась схема экспертной оценки, разработанной Н.М. Аксариной, К.Л. Печоро ...