Система домашних упражнений

Страница 1

Обстоятельное решение более менее сложной геометрической задачи на построение требует много времени. Между тем на уроки геометрии в средней школе отводиться сравнительно мало часов. В силу этих причин учитель математики решает весьма огромное количество задач на построение, а остальные упражнения этого рода предлагаются учащимся порядке домашнего задания, причем, если есть в этом необходимость, дает соответствующие пояснения и указания.

Рассмотрим виды домашних упражнений, которые можно предложить учащимся.

Пропедевтический вид домашних упражнений для решения конкретных задач

1. Простейшие графические построения.

В стабильном учебнике основные задачи на построение излагаются после того, как учащиеся пройдут смежные и вертикальные углы, свойства сторон треугольника, признаки равенства треугольников, ознакомятся с некоторым геометрическим местом точек. Между тем учащиеся с первых же дней знакомства с геометрией должны выполнять некоторые простейшие построения, чтобы в дальнейшем при решении геометрических задач на построение не встречать затруднений в выполнении графической стороны таких упражнений. Причем, учащимся разрешается использоваться не только циркулем и линейкой, но и транспортиром, и чертежным угольником.

2. Построить угол (без транспортира)

плоскость , если известно, что

.

3. Построение отрезков, определенных алгебраическими формулами.

4. Установление связи между данными геометрическими образами.

Эти упражнения побуждают учащихся вдумываться в условие предлагаемой задачи, развивают в них умение отыскивать те метрические закономерности между данным геометрическими образами, с изменением которых изменяется конфигурация этих образов.

5. Определение возможных конфигураций данных геометрических образов. Эти упражнения приучают вдумчиво относиться к условию задачи. Особенно желательно, чтобы в каждом отдельном случае выполнение такого упражнения предшествовало решению задачи, в которой имеют место рассматриваемые конфигурации геометрических образов. Вот некоторые из таких упражнений:

1) указать возможные конфигурации следующих геометрических образов: … .

2) сколько точек касания и пересечения и при каких конфигурациях могут иметь следующие геометрические образы

3) пояснить чертежами в каких случаях окружность и правильный пятиугольник могут иметь 8, 9, 10 общих точек,

4) дать различные конфигурации трех окружностей.

Задача: Пояснить чертежами, при каких конфигурациях и сколько общих точек имеют контуры треугольника и четырехугольника.

a. Одна общая точка

b. Две общие точки

c. Три общие точки

d. Четыре общи точки

e. Пять общих точек

f. Шесть общих точек

g. Бесконечно много общих точек

Страницы: 1 2


Другие статьи:

Педагогическое взаимодействие
Взаимодействие – философская категория, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность, изменение состояния, взаимопереход, а также порождение одним объектом другого. К общим свойствам всех педагогических явлений относится взаимодействие учителя и уче ...

Коммуникативные игры
«Сиамские близнецы» Цель: развитие концентрации внимания, сплочение группы. Спросите у ребенка, знает ли он, кто такие сиамские близнецы. Если он об этом не слышал, расскажите ему, что очень редко, но все же случается, что рождаются сразу не просто два ребенка, а дети, сросшиеся между собой. Что ...

Диагностика нервно-психического развития детей раннего возраста
Диагностика нервно-психического развития проводилась на базе МДОУ Детский сад II категории №368, в общеразвивающей группе «Солнышко» (группа детей в возрасте 2 лет). Для диагностики нервно-психического развития детей использовалась схема экспертной оценки, разработанной Н.М. Аксариной, К.Л. Печоро ...

Главные разделы

Copyright © 2024 - All Rights Reserved - www.centrstar.ru