Пример 7. Решить уравнение .
ОДЗ – множество действительных чисел. Область изменения функции f(x)= ‑ множество Y1=
, область изменения функции
=
‑ множество Y2=
. Тогда Y1∩Y2=
∩
={2}. Следовательно, если уравнение имеет решения, то ими могут быть только те значения x, при которых обе функции одновременно принимают значение, равное 2. Функция
принимает это значение только один раз, при x=0. Нетрудно убедиться, что f(0)=2.
Ответ: x=0.
Использование свойств четности или нечетности и периодичности функций. Знания учащихся о свойствах четных и нечетных функций, о периодических функциях становятся более глубокими и осознанными, если систематически использовать эти свойства при решении уравнений и неравенств. Кроме того, применение свойств четности или нечетности, периодичности функций способствует рационализации самих решений.
Пусть имеем уравнение или неравенство F(x)=0, F(x)>0 (F(x)<0), где F(x) – четная или нечетная функция. Область определения такой функции симметрична относительно нуля (необходимое условие).
Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная – равные по абсолютной величине, но противоположного знака значения.
Выводы:
Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.
Чтобы решить неравенство F(x)>0 (F(x)<0), где F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Действительно, если решением данного неравенства является промежуток (x1, x2), где x1, x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2, ‑ x1).
Чтобы решить неравенство F(x)>0 (F(x)<0), F(x) – нечетная функция, достаточно найти его решения для x>0 (или x<0). Действительно, функция F(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)<0) (оставшиеся значения x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x<0), то легко записать промежутки знакопостоянства и для x<0 (x>0).
Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)<0) достаточно найти на промежутке, равном по длине периоду функции, после чего записать общее решение. Если периодическая функция еще и четная или нечетная, то решение достаточно найти на промежутке, равном по длине половине периода.
Выводы по параграфу: анализ методической и математической литературы показал, что метод решения уравнений и неравенств с использованием свойств функций используется в школьном курсе математики редко, а в заданиях ЕГЭ и на вступительных экзаменах почти каждый год предлагаются уравнения и неравенства, решение которых упрощается, если применить свойства функций.
Вклад Г.Н. Волкова в развитие этнопедагогики
Большой вклад в развитие этнопедагогики внес известный чувашский ученый Г.Н. Волков. Он впервые в педагогической литературе применил термин "этнопедагогика". Его научные труды послужили основой для создания концепции этнопедагогики. Сегодня Геннадий Никандрович -- наиболее авторитетный у ...
Орша в годы Великой Отечественной войны
С первых дней Великой Отечественной войны Орша оказалось в зоне военных действий. С 23 июня 1941 г. город и железнодорожная станция регулярно подвергались налетам немецко-фашистских бомбардировщиков. Началась эвакуация промышленного оборудования предприятий. Жители возводили оборонительные сооруже ...
Создание
критической и социальной педагогики в период постмодернизма
В свете современных общественных и культурных изменений важное место занимает анализ образовательного процесса, который постоянно изменяется, модернизируется в разнообразных и многогранных по содержанию формах. Современный постмодернистский анализ основывается на своеобразном споре между сторонник ...