Пример 7. Решить уравнение .
ОДЗ – множество действительных чисел. Область изменения функции f(x)= ‑ множество Y1=
, область изменения функции
=
‑ множество Y2=
. Тогда Y1∩Y2=
∩
={2}. Следовательно, если уравнение имеет решения, то ими могут быть только те значения x, при которых обе функции одновременно принимают значение, равное 2. Функция
принимает это значение только один раз, при x=0. Нетрудно убедиться, что f(0)=2.
Ответ: x=0.
Использование свойств четности или нечетности и периодичности функций. Знания учащихся о свойствах четных и нечетных функций, о периодических функциях становятся более глубокими и осознанными, если систематически использовать эти свойства при решении уравнений и неравенств. Кроме того, применение свойств четности или нечетности, периодичности функций способствует рационализации самих решений.
Пусть имеем уравнение или неравенство F(x)=0, F(x)>0 (F(x)<0), где F(x) – четная или нечетная функция. Область определения такой функции симметрична относительно нуля (необходимое условие).
Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значения, а нечетная – равные по абсолютной величине, но противоположного знака значения.
Выводы:
Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.
Чтобы решить неравенство F(x)>0 (F(x)<0), где F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Действительно, если решением данного неравенства является промежуток (x1, x2), где x1, x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2, ‑ x1).
Чтобы решить неравенство F(x)>0 (F(x)<0), F(x) – нечетная функция, достаточно найти его решения для x>0 (или x<0). Действительно, функция F(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)<0) (оставшиеся значения x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x<0), то легко записать промежутки знакопостоянства и для x<0 (x>0).
Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)<0) достаточно найти на промежутке, равном по длине периоду функции, после чего записать общее решение. Если периодическая функция еще и четная или нечетная, то решение достаточно найти на промежутке, равном по длине половине периода.
Выводы по параграфу: анализ методической и математической литературы показал, что метод решения уравнений и неравенств с использованием свойств функций используется в школьном курсе математики редко, а в заданиях ЕГЭ и на вступительных экзаменах почти каждый год предлагаются уравнения и неравенства, решение которых упрощается, если применить свойства функций.
Разработка творческих работ для
обучения работе в графических редакторах детей с нарушениями слуха
Описанные в предыдущем параграфе формы, методы и средства обучения, позволили нам разработать творческие работы, выполнение которых наряду с использованием информационных технологий позволяет развивать творческие способности учащихся.
Трудно назвать другую сферу человеческой деятельности, которая ...
Особенности восприятия геометрического материала
Долгие годы геометрия как учебный предмет в школе строилась на дедуктивной (аксиоматической) основе и требовала для своего усвоения хорошо развитого теоретического (понятийного) мышления.
Вместе с тем основной целью изучения геометрии признавалось и развитие пространственных представлений (вообра ...
Особенности возрастного развития детей младшего школьного возраста
Младший школьный возраст характеризуется относительно равномерным развитием двигательного аппарата, но интенсивность роста отдельных размерных признаков его различна. Так, длинна тела увеличивается в этот период в большей мере, чем его масса. Исследования показывают, что младший школьный возраст я ...