Пример 2. Решить неравенство
Нахождение ОДЗ неравенства есть трудная задача, поэтому перейдем к равносильной ему системе неравенств.
Третье неравенство имеет решение . Первое и второе неравенство справедливо лишь для x из промежутка
. Поэтому этот промежуток является множеством решений системы.
Ответ: .
Использование монотонности функций при решении уравнений и неравенств. Это свойство при решении уравнений и неравенств используется чаще всего. Решение уравнений и неравенств с применением монотонности функций основывается на следующих утверждениях:
2.1Пусть f(x) – непрерывная и строго монотонная функция на некотором промежутке. Тогда уравнение вида f(x)=c, где с – данная константа, может иметь не более одного решения на этом промежутке.
2.2.Пусть f(x) и φ(x) непрерывные на некотором промежутке функции. Тогда если f(x) монотонно возрастает, а φ(x) убывает, то уравнение f(x)=φ(x) имеет не более одного решения на этом промежутке.
2.3.Пусть функция f(x) возрастает на своей области определения. Тогда для решения неравенства f(x)>c достаточно решить уравнение f(x)=c. Если x0 – корень, то решениями неравенства будут значения , принадлежащие области определения f(x).
Рассмотрим на примерах, как используются эти утверждения.
Пример 3. Решить неравенство . Существует стандартный прием решения: возведение в квадрат (при условии
0). Мы рассмотрим решение данного неравенства с использованием свойства монотонности. Функция, расположенная в левой части неравенства, монотонно возрастает, в правой части - убывает. Из этого следует, что уравнение
имеет не более одного решения, причем если x0 – решение этого уравнения, то при
будет
, а решением данного неравенства будет
. Значение
легко подбирается:
.
Ответ: .
Пример 4. Решить уравнение
Данное уравнение имеет очевидное решение . Докажем, что других решений нет. Поделим обе части на
, получим
. Левая часть представляет собой монотонно убывающую функцию. Правая часть функция постоянная. Следовательно, каждое свое значение она принимает один раз, то есть данное уравнение имеет единственное решение.
Ответ: .
Уравнения вида . При решении уравнений данного вида используются следующие утверждения :
пусть область существования функции есть промежуток M и пусть эта функция непрерывна и строго монотонна на этом промежутке. Тогда уравнение
будет равносильно системе
;
Основные функции внимания
Внимание в жизни человека и деятельности человека выполняет много функций. Оно активизирует нужные и тормозит ненужные в данный момент психические физиологические процессы, способствует организованному и целенаправленному отбору поступающей в организм в соответствии с его актуальными потребностями ...
Конспекты уроков по развитию представлений о музыкальной жизни Челябинского
Урала в новейшее время у школьников
Конспект учебного занятия по музыке в третьем классе по теме «Разнообразие русского музыкального фольклора»
Сколько песен у России – никому не сосчитать!
Цель учебного занятия
– знакомство учащихся с разнообразием русского музыкального фольклора.
Задачи учебного занятия:
· воспитание у детей ...
Понятие эстетического воспитания школьников старших классов
эстетический декоративный искусство школа
Эстетическое воспитание основывается на природных возможностях эстетического развития человека. Однако эти потенциальные возможности превращаются в реальные способности только благодаря воспитанию. Можно иметь безукоризненный слух и не слышать музыку Бетх ...