№1. Решите уравнение:
а) ; б)
№2. Решите уравнение:
а) ; б) .
№3. Решите уравнение:
а) ; б) .
№4. Решите уравнение:
а) ; б) .
№5. Решите уравнение:
а) ; б) .
№6. Решите уравнение:
а) ; б) .
№7. Решите уравнение:
а) ;
б) .
№8. Сколько корней имеет уравнение:
а) , на отрезке ;
б) , на отрезке ?
№9. Докажите тождество:
а) ; б) .
№10. Используя замену и тождества из упражнения №9, решите уравнения:
а) ; б) .
№11. Решите уравнение:
а) ;
б) .
№12. Решите уравнение:
а) ;
б) .
Методические рекомендации.
Как уже было сказано выше, при последовательном переходе от одного упражнения к другому их сложность увеличивается. В чем это проявляется? В первых двух заданиях от учащихся требуется простое применение формулы двойного аргумента, при помощи которой уравнение сводится к простейшему тригонометрическому уравнению. Задания №3 - №5 приводят исходное уравнение к квадратному, а потом, уже после решения соответствующего квадратного уравнения, мы приходим к решению простейшего тригонометрического уравнения. Т.е. здесь нам требуется выполнить больше преобразований.
Продолжая последовательное передвижение от номера к номеру, отчетливо видно, что количество преобразований увеличивается.
В задании №11 до сознания ученика доводится тот факт, что аргументом тригонометрической функции может являться многочлен второй более высоких степеней.
Приведем решение уравнения из №11 и п. а) №12.
№11. Решить уравнение:
а) .
Решение
№12. Решить уравнение:
а) .
Решение
Аналогичным образом решается и п. б).
Урок №10
Тема урока: Формулы понижения степени».
№1. Решите уравнение:
а) ; б) .
№2. Решите уравнение:
а) ; б) .
№3. Решите уравнение:
Комплекс требований к профессиональной подготовке лингвиста-преподавателя в контексте профилизации обучения
Конец XX века характеризуется переходом от индустриального к постиндустриальному, информационному обществу. Это, в свою очередь, способствует расширению связей, усилению процессов глобализации, интеграции, информатизации.
В этой связи появляются новые требования к системе и качеству образования. ...
Формы обучения детей с проблемами в развитии
Можно представить перечень возможных организационных форм образования детей с проблемами развития:
- специализированный детский сад полного дня;
- специализированные группы кратковременного пребывания в детском саду;
- специализированные школы;
- школы-интернаты;
- школы надомного обучения.
...
Обработка результатов по основным тестам
Для практического исследования была выбрана гимназия города Тюкалинска, где и проводилась работа с социальным педагогом, родителями и группой детей-подростков.
Испытуемым были предложены тесты, опросники и анкеты.
Исходными (опорными) данными для проведения опроса явились:
субъект социальной пе ...