Задания №1 - №6 являются обязательными для всех учащихся.
Как можно было заметить ранее, система упражнений, представленная к урокам №1 - №7 (в дальнейшем это будет справедливо при подборе упражнений и на последующих уроках), составлена таким образом, чтобы показать учащимся связь между преобразованиями, которые они изучали с 7 по 9 касс, и тригонометрическими уравнениями. Сначала от учащихся требуется простое понимание того, что тригонометрические функции могут принимать как положительные, так и отрицательные значения. Затем до сознания учеников доводиться тот факт, что любое тригонометрическое уравнение сводится к простейшему при помощи несложных преобразований, которые они уже знают (разложение на множители, введение новой переменной , приведение к квадратному уравнению).
Приведем решение № 9 (п. (а)) и №12.
№9. Найти корни заданного уравнения на заданном промежутке:
а) .
Решение
Однако для решения нашего уравнения данная запись формулы для нахождения корней тригонометрического уравнения не является удобной, поэтому воспользуемся другой записью
Нетрудно видеть, что простым перебором по параметру n мы сразу получаем все требуемые корни уравнения, т.е.:
Ответ: .
№12. Решить уравнение:
а) .
Решение
В данном уравнении речь идет об отыскании корней уравнения на отрезке
. Из серии
этому отрезку принадлежат только три значения:
.
Однако и
также являются решением данного уравнения, поэтому ответом будут являться следующие значения:
.
б) .
Решение
Так же как и в п. а), рассмотрим серию решений уравнения , накладывая на нее следующие ограничения:
.
Серией решения уравнения являются следующие значения x:
.
Очевидно, что неравенствам не будет удовлетворять только значение
(при
).
Ответ: .
Урок №8
На данном уроке целесообразно рассмотреть еще один случай введения новой переменной при решении тригонометрических уравнений: решение тригонометрических уравнений, сводящихся к квадратным уравнениям.
№1. Решите уравнение:
а) ; б)
.
№2. Решите уравнение:
а) ; б)
.
№3. Решите уравнение:
а) ; б)
.
№4. Решите уравнение:
а) ; в)
;
Разработка урока-практикума для 10-го класса по теме «Решение
тригонометрических уравнений»
Дата: 22.02.2008 г.
Школа № 49. Класс 10 «Б».
Общая тема: «Тригонометрические функции».
Тема урока: «Решение тригонометрических уравнений»
Тип урока: Урок-практикум.
Цели:
Закрепить и применить знания при решении задач по теме: «Решение тригонометрических уравнений».
Развивать представления ...
Типы элективных курсов
В научно-методической литературе условно выделяют три типа элективных курсов:
I. Предметные курсы, задача которых - углубление и расширение знаний по предметам, входящих в базисный учебный школы.
В свою очередь, предметные элективные курсы можно разделить на несколько групп.
Элективные курсы по ...
Рекомендации по формированию и активизации познавательной деятельности
учащихся на уроках в специальных школах VIΙI вида
I. Основа активности учебно-познавательной деятельности:
- адаптация, приспособление детской психологии к созданным на уроке условиям;
- стимулирование учебно-познавательной деятельности учащихся;
- преодоление противоречий между познавательными и практическими заданиями, выдвигаемыми ходом обу ...