Система упражнений по теме «Тригонометрические уравнения»

Страница 8

Задания №1 - №6 являются обязательными для всех учащихся.

Как можно было заметить ранее, система упражнений, представленная к урокам №1 - №7 (в дальнейшем это будет справедливо при подборе упражнений и на последующих уроках), составлена таким образом, чтобы показать учащимся связь между преобразованиями, которые они изучали с 7 по 9 касс, и тригонометрическими уравнениями. Сначала от учащихся требуется простое понимание того, что тригонометрические функции могут принимать как положительные, так и отрицательные значения. Затем до сознания учеников доводиться тот факт, что любое тригонометрическое уравнение сводится к простейшему при помощи несложных преобразований, которые они уже знают (разложение на множители, введение новой переменной , приведение к квадратному уравнению).

Приведем решение № 9 (п. (а)) и №12.

№9. Найти корни заданного уравнения на заданном промежутке:

а) .

Решение

Однако для решения нашего уравнения данная запись формулы для нахождения корней тригонометрического уравнения не является удобной, поэтому воспользуемся другой записью

Нетрудно видеть, что простым перебором по параметру n мы сразу получаем все требуемые корни уравнения, т.е.:

Ответ: .

№12. Решить уравнение:

а) .

Решение

В данном уравнении речь идет об отыскании корней уравнения на отрезке . Из серии этому отрезку принадлежат только три значения: .

Однако и также являются решением данного уравнения, поэтому ответом будут являться следующие значения: .

б) .

Решение

Так же как и в п. а), рассмотрим серию решений уравнения , накладывая на нее следующие ограничения: .

Серией решения уравнения являются следующие значения x: .

Очевидно, что неравенствам не будет удовлетворять только значение (при ).

Ответ: .

Урок №8

На данном уроке целесообразно рассмотреть еще один случай введения новой переменной при решении тригонометрических уравнений: решение тригонометрических уравнений, сводящихся к квадратным уравнениям.

№1. Решите уравнение:

а) ; б) .

№2. Решите уравнение:

а) ; б) .

№3. Решите уравнение:

а) ; б) .

№4. Решите уравнение:

а) ; в) ;

Страницы: 3 4 5 6 7 8 9 10 11 12 13


Другие статьи:

Психолого-педагогические основы методики обучения иностранным языкам
Для методики обучения ИЯ особую значимость имеют данные психологии, во-первых, о речевой деятельности, во-вторых, о человеческом общении и, в-третьих, о самих участниках образовательного процесса – учащихся и учителях. Достаточно целостный и в то же время детальный образ человека рисует антрополо ...

Деятельность молодежных центров г.Серпухова
дополнительный образование молодежный политика В г. Серпухове активно функционируют следующие учреждения дополнительного образования: центр внешкольной воспитательной работы, учебно-производственный комбинат, станция юных техников, районная детская школа искусств, подростковый клуб "Орленок& ...

Специфика образовательного процесса гимназий
Гимназия – «вид общеобразовательного учреждения в системе непрерывного образования». Гимназия: - дает выпускникам универсальное образование, позволяющее адаптироваться к изменяющимся социально-экономическим условиям, интегрироваться в систему мировой и национальной культур; - реализует идею общ ...

Главные разделы

Copyright © 2025 - All Rights Reserved - www.centrstar.ru